心连心鲜花网 加入收藏  -  设为首页
您的位置:心连心鲜花网 > 知识百科 > 正文

目录

1,卷积公式是什么呢?

卷积公式是什么呢?

卷积公式如下: 卷积积分公式是(f *g)∧(x)=(x)·(x),卷积是分析数学中一种重要的运算。设f(x), g(x)是R1上的两个可积函数,作积分,可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。 这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x)。容易验证,(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数。 简介: 卷积与傅里叶变换有着密切的关系。以(x) ,(x)表示L1(R)1中f和g的傅里叶变换,那么有如下的关系成立:(f *g)∧(x)=(x)·(x),即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换。这个关系,使傅里叶分析中许多问题的处理得到简化。 由卷积得到的函数(f *g)(x),一般要比f,g都光滑。特别当g为具有紧支集的光滑函数,f 为局部可积时,它们的卷积(f *g)(x)也是光滑函数。利用这一性质,对于任意的可积函数 , 都可以简单地构造出一列逼近于f 的光滑函数列fs(x),这种方法称为函数的光滑化或正则化。

2,卷积是什么意思?

卷积是一种积分变换的数学方法,在许多方面得到了广泛应用。用卷积解决试井解释中的问题,早就取得了很好成果。 在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。 卷积应用 统计学中,加权的滑动平均是一种卷积。概率论中,两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积。 光学中,反射光可以用光源与一个反映各种反射效应的函数的卷积表示。电子工程与信号处理中,任一个线性系统的输出都可以通过将输入信号与系统函数(系统的冲激响应)做卷积获得。物理学中,任何一个线性系统(符合叠加原理)都存在卷积。 以上内容参考:百度百科-卷积