目录
1,高通量测序技术及原理介绍
高通量测序技术及原理介绍如下: 1.什么是高通量测序 高通量测序技术也被称作二代测序技术(Next Generation Sequencing, NGS),这是相对一代测序技术(Sanger Sequencing)而言的,同时由于高通量测序的出现使得我们能对一个物种的基因组和转录组进行全面、细致的分析成为可能,所以又被称为深度测序(deep sequencing)。 高通量测序技术以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志,通过读取多个短DNA 片段,拼接成完整的序列信息。与一代测序Sanger法相比,高通量测序技术在处理大规模样品时具有显著的优势,在测序速度及测序通量上具有无可取代的地位,是目前组学研究中的核心技术。 2.原理 将基因组 DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒 DNA。每个每个循环测序反应含有所有四种脱氧核苷酸三磷酸(dNTP)使之扩增,并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)使之终止。由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键。 因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),使延长的寡聚核苷酸选择性地在G、A、T或C处终止,并产生荧光标记。 最终得到一组长几百至几千碱基的链终止产物,它们具有共同的起始点,但终止在不同的的核苷酸上。通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。
2,高通量测序技术及原理介绍
什么是高通量测序 高通量测序技术也被称作二代测序技术(Next Generation Sequencing, NGS),这是相对一代测序技术(Sanger Sequencing)而言的,同时由于高通量测序的出现使得我们能对一个物种的基因组和转录组进行全面、细致的分析成为可能,所以又被称为深度测序(deep sequencing)。高通量测序技术以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志,通过读取多个短DNA 片段,拼接成完整的序列信息。与一代测序Sanger法相比,高通量测序技术在处理大规模样品时具有显著的优势,在测序速度及测序通量上具有无可取代的地位,是目前组学研究中的核心技术。 测序原理:将基因组 DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒 DNA。每个每个循环测序反应含有所有四种脱氧核苷酸三磷酸(dNTP)使之扩增,并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)使之终止。由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),使延长的寡聚核苷酸选择性地在G、A、T或C处终止,并产生荧光标记,最终得到一组长几百至几千碱基的链终止产物,它们具有共同的起始点,但终止在不同的的核苷酸上。通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。
3,基因组高通量测序的原理
测序方案建立在双脱氧测序法(Sanger等,1977)的基础上。为了从每一克隆插入片段两端成对地进行测序,每一个质粒模板DNA板应配备两个384孔循环测序反应板。 测序反应采用BigDyeTerminatorchemistryversion3.1(AppliedBiosystems)和标准M13或常用正向引物和反向引物。测序反应通过BiomekFX(Beckman)移液操作工作站建立。 机械臂负责等分模板试样,起与反应液混合的作用,反应液含有双脱氧核苷酸、荧光标记的核苷酸、TaqDNA聚合酶、序列引物和缓冲液。 模板和反应板有条形码,且在BiomekFX移液操作工作站上有条形码读取器跟踪,确保模板和反应液转移中没有错误。30~40线性扩增步骤连续循环在MJResearchTetrads或9700热循环仪(Ap—pliedBiosystems)中进行。 扩展资料: 技术发展: 高通量测序平台(high-throughput_genome_sequence_database)自从2005年454LifeSciences公司(2007年该公司被Roche正式收购)推出了454FLX焦磷酸测序平台(454FLXpyrosequencingplatform)以来。 曾推出过3730xlDNA测序仪(3730xlDNAAnalyzer)的AppliedBioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了。 因为他们的拳头产品毛细管阵列电泳测序仪系列(seriescapillaryarrayelectrophoresissequencingmachines)遇到了两个强有力的竞争对手,一个就是罗氏公司(Roche)的454测序仪(RochGSFLXsequencer)。 另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(GenomeAnalyzerplatform),为此,2007年ABI公司推出了自主研发的SOLiD测序仪(ABISOLiDsequencer)。这三个测序平台即为目前高通量测序平台的代表。 参考资料来源:百度百科-基因组高通量测序
4,基因测序是什么意思
基因测序是一种新型的能够从血液或唾液中分析测定基因全序列的基因检测技术。 基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治疗。 基因测序相关产品和技术已由实验室研究演变到临床使用,可以说基因测序技术是下一个改变世界的技术。 DNA测序是指利用一定的实验室方法分析特定DNA片段的碱基序列,也就是腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶在特定DNA片段的排列方式。 DNA测序即测定DNA序列的技术,用DNA测序仪等仪器对已提纯的DNA单链或者双链DNA进行分析,得到腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶在特定DNA片段的排列方式。在分子生物学研究中,DNA测序为进一步研究和改造目的基因提供了科学基础。 DNA测序有助于了解人类基因组、其他动物、植物和微生物的完整DNA序列,为进一步研究和改造目的基因提供了科学基础,极大地推动了生物学和医学的研究及发现;近几年来已经快速应用在众多领域,如疾病诊断、微生物鉴定、法医生物学、生物技术、生物系统学中,不断造福人类。 基因组测序技术: 1、第一代测序技术: 1977年,由Frederick Sanger和Coulson发明的双脱氧链终止法或者是由Walter Gibert 和 Allan M. Maxam开创的化学降解法。 双脱氧终止法(Sanger测序法)的核心原理:由于ddNTP(四种带有荧光标记的ATCG碱基)的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA的合成反应。 在4个DNA合成反应体系中分别加入带有一定比例带有放射性同位素标记的dNTP, 然后利用琼脂糖凝胶电泳和放射自显影后可以根据电泳条带的位置确定待测分子的DNA序列。 小扩展---Sanger测序法为科学研究作出的贡献:1996年第一次完成对单细胞真核生物(酿酒酵母)的基因组测序。1998年第一次对多细胞真核生物(线虫)基因组的测序。2000年完成第一个植物基因组(拟南芥)的测序。1990-2003年人类基因组计划(HGP)。 化学降解法的核心原理:将一个 DNA 片段的 5' 端磷酸基作放射性标记,再分别采用不同的化学方法修饰和裂解特定碱基,从而产生一系列长度不一而 5' 端被标记的 DNA 片段,这些以特定碱基结尾的片段群通过凝胶电泳分离,再经放射线自显影,确定各片段末端碱基,从而得出目的 DNA 的碱基序列。 一代测序的主要特点是合成终止测序,测序读长可达1000bp,准确性高达99.999%,测序成本高,通量低。 2、第二代测序技术: 所谓的NGS即Next-generation sequencing,翻译为“下一代测序技术”,或者是“第二代测序技术”,也叫高通量测序技术。2003年,454 Life Science公司首先建立了高通量的第二代测序技术,随后推出了454测序仪(后被Roche公司收购。2006年,Illumina公司推出Solexa测序仪。2007年,ABI公司推出SOLiD测序仪。 Roche / 454 FLX Pyrosequencer主要技术原理是大规模并行焦磷酸合成测序。即在DNA聚合酶的催化下,dNTP加入到DNA的3'端,并释放一分子焦磷酸,该分子焦磷酸又与APS结合生成ATP,最后荧光素酶催化氧化荧光素的裂解,同时发出荧光,从而进行测定。