心连心鲜花网 加入收藏  -  设为首页
您的位置:心连心鲜花网 > 知识百科 > 正文

目录

1,微分流形的概念

微分流形的概念

参见条目:流形具体说来,设M是一个豪斯多夫拓扑空间。U是M的开集,h是U到n维欧氏空间R的开集(常取为单位球内部或立方体内部等等)上的一个同胚映射,则(U,h)称为一个坐标图,U称为其中点的一个坐标邻域。设M为开集系{Uα}所覆盖,则(Uα,hα)的集合称为M的一个坐标图册。如果M的坐标图册中任何两个坐标图都是C相关的,则称M有C微分结构,又称M为n维的C微分流形。C相关是指流形M上同一点的不同坐标之间的变换关系是C可微分的(k=0,1,…,∞或ω),依通常记号C表示解析函数。具体来说, 如p∈Uα∩Uβ,(x,)(x)(i=1,…,n)分别是p在两个坐标图(Uα,hα),(Uβ,hβ)下的(局部)坐标,即那么它们之间的关系式可表为而ƒ关于x(j=1,2,…,n)具有直到k次的连续导数。k=0时,M是拓扑流形;k>0时,就是微分流形;k=ω时,是解析流形。C流形又常称为光滑流形。如果微分流形M是一个仿紧或紧致拓扑空间,则称M为仿紧或紧致微分流形。如果可选取坐标图册使微分流形M中各个坐标邻域之间的坐标变换的雅可比行列式都大于零,则称这个流形是可定向的。球面是可定向的,麦比乌斯带是不可定向的。同一拓扑流形可以具有本质上不同的微分结构。米尔诺(John Milnor)首先发现作为一个拓扑流形,七维球面上可有不同于标准微分结构的怪异微分结构。后来弗里德曼(Michael Freedman)等得出如下的重要结果:四维欧氏空间中也有多种微分结构,这与其他维数的欧氏空间只有惟一的微分结构有着重大区别。

2,微分流形的结构

我们可以在微分流形上赋予不同的几何结构(即一些特殊的张量场)。不同的几何结构就是微分几何不同的分支所研究的主要对象。 黎曼度量主条目:黎曼几何仿紧微分流形均可赋予黎曼度量(见黎曼几何),且不是惟一的。有了黎曼度量,微分流形就有了丰富的几何内容,就可以测量长度,面积,体积等几何量。近复结构和复流形参见:复流形微分流形M上的一个近复结构是M的切丛TM的一个自同构,满足J·J=-1。如果近复结构是可积的,那么我们就可以找到M上的全纯坐标卡,使得坐标变换是全纯函数。这时我们得到了一个复流形。辛流形参见:辛几何微分流形上的一个辛结构是一个非退化的闭的二次微分形式。这样的流形成为辛流形。

3,什么是微分流形

微分流形 光滑流形(英语:smooth manifold),或称 C∞-微分流形(differential manifold)、C∞-可微流形(differentiable manifold),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是 C∞ 类的微分流形。可微流形在物理学中非常重要。特殊种类的可微流形构成了经典力学、广义相对论和杨-米尔斯理论等物理理论的基础。可以为可微流形开发微积分。可微流形上的微积分研究被称为微分几何。 历史 微分几何(differential geometry)作为一个独特的学科的出现一般归功于高斯(Carl Friedrich Gauss)和黎曼( Bernhard Riemann)。黎曼在哥廷根的著名的康复讲座中描述了多个面向。他通过在一个新的方向上改变给定对象的直观过程激发了多方面的想法,并且预先描述了协调系统和图表在随后形式发展中的作用: 在一个概念下的事例如果构成n维流形,一个流形的特色可以简单表示其属性,则化简的结果必然是有限个数字,…… -波恩哈德·黎曼的就职演说《论作为几何学基础的假设》 物理学家马克士威(James Clerk Maxwell)和数学家库尔巴斯托罗(Gregorio Ricci-Curbastro)和齐维塔(Tullio Levi-Civita)的成果导入了张量分析和广义协变性的概念,它将内在几何属性识别为关于协调变换的不变量。这些想法在1912年爱因斯坦发展广义相对论理论时取得关键性的应用。外尔(Hermann Weyl)于1912年给出了微分流形的一个内在的定义。1930年代,该课题基础性方面的工作被哈斯勒·惠特尼(Hassler Whitney)等人厘清,使得从19世纪下半叶起开始发展起来的相关的直觉知识变得更精确,并通过微分几何和李群使微分流形的理论得到进一步的发展。 C -可微流形的定义 设是自然数,-维拓扑空间被称为是-维可微流形,如果, 为豪斯多夫空间 被-维坐标邻域所覆盖,换句话说,存在中的-维坐标邻域族,使得 满足的任意,其坐标转换  为一个到的映射。 注意:每个座标邻域都是流形中的开集合。 当第三个条件中的座标变换改成是光滑映射(代表可无限次微分)时,满足这三条件的称为光滑流形,写作流形;当座标变换不是可微映射,仅是连续映射时,满足这三条件的称为拓扑流形,写作流形。 图册 拓扑空间X上的图册称为卡(chart)的{(Uα, φα)}的集合,其中Uα是覆盖 X的开放集合,并且对于每个索引α  是Uα在n维真实空间的开放子集上的同胚。图册的转移映射(transitionmap)功能是  以图册来定义流形的概念是由夏尔·埃雷斯曼于1943年所提出。每个拓扑流形都有一个图册。Ck-atlas是一个图册,其转换图是Ck。拓扑流形具有C0-atlas,并且通常Ck-流形具有Ck-atlas。连续图册(continuous atlas)是C0图册,平滑图册是C∞图册,分析图册(analytic atlas)是Cω图册。