心连心鲜花网 加入收藏  -  设为首页
您的位置:心连心鲜花网 > 知识百科 > 正文

目录

1,拉曼光谱能分析出什么?

拉曼光谱能分析出什么?

拉曼光谱能分析出材料的化学结构,它提供的信息包括:化学结构和化学鉴别;相和形态;应力;污染物和杂质。 拉曼光谱对于分子键合以及样品的结构非常敏感,因而每种分子或样品都会有其特有的光谱“指纹”。这些“指纹”可以用来进行化学鉴别、形态与相、内压力/应力以及组成成份等方面的研究和分析。 拉曼可测到最小波数可达多少?测试深度有多深? 可测到最小波数可达10cm-1。 拉曼是表面测试,探测深度只有10nm左右,光斑1um大小,样品均匀性对结果影响很大,如果测试出来结果没有出峰,说明在那个位置是没有该物质结构存在。薄膜样品如果膜层厚度小于这个,会出现基底峰。

2,拉曼光谱图怎么分析

拉曼光谱图分析:是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。 拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。 电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、收集系统、分光系统和检测系统构成, 光源一般采用能量集中、功率密度高的激光, 收集系统由透镜组构成, 分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射和杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件。 原位电化学拉曼池一般具有工作电极、辅助电极和参比电极以及通气装置。为了避免腐蚀性溶液和气体侵蚀仪器, 拉曼池必须配备光学窗口的密封体系。 在实验条件允许的情况下, 为了尽量避免溶液信号的干扰, 应采用薄层溶液(电极与窗口间距为0.1~1mm) , 这对于显微拉曼系统很重要, 光学窗片或溶液层太厚会导致显微系统的光路改变, 使表面拉曼信号的收集效率降低。电极表面粗化的最常用方法是电化学氧化- 还原循环(Oxidation-Reduction Cycle,ORC)法, 一般可进行原位或非原位ORC处理。

3,拉曼光谱仪是测什么的?它的原理是什么?

拉曼光谱仪是一种光谱仪系列的简称,基于印度科学家C.V.拉曼(Raman)发现拉曼散射效应。拉曼光谱仪的原理是什么?又能测什么物质呢?   1. 拉曼光谱基本原理   当一束频率为V0的单色光照射到样品上后,分子(或原子)可以使入射光发生散射或者反射。大部分光只是改变方向发生散射,而光的频率仍与激发光的频率(即V0)相同,这种散射称为瑞利散射(,大约占据99%左右;约占总散射光强度的 10E-6~10E-10的散射,不仅改变了光的传播方向,而且散射光的频率也改变了,不同于激发光的频率,称为拉曼散射。拉曼散射中频率减少的,即V1V0的散射称为反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常测定的大多是斯托克斯散射,也统称为拉曼散射。拉曼光谱可以作为分子结构定性分析。激光入射到样品,产生散射光:散射光为弹性散射,频率不发生改变为瑞丽(Rayleigh)散射;散射光为非弹性散射,频率发生改变为拉曼(Raman)散射。如图:Rayleigh散射(左): 弹性碰撞;无能量交换,仅改变方向;Raman散射(右): 非弹性碰撞;方向改变且有能量交换。其中,E0基态,E1振动激发态;E0+ hν0,E1+ hν0激发虚态;获得能量后,跃迁到激发虚态。 2.拉曼光谱仪组成和使用   散射光相对于入射光频率位移与散射光强度形成的光谱称为拉曼光谱。拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。那么拉曼光谱仪能够测什么呢?   拉曼光谱仪的使用,首先要具有激发波长,一般使用的激发波长都是几个固定的,如785nm,532nm, 1064nm等等。其次要有接收器,由于拉曼散射的信号无方向性,所以要使用如积分球、准直透镜等采样附件。由于拉曼光谱具有分辨率较高等特点,故其可以广泛应用于有机物、无机物以及生物样品的应用分析中。 3.拉曼光谱仪谱图提供丰富的物质信息   拉曼谱线的数目、拉曼位移、和谱线强度等参量提供了被散射分子及晶体结构的有关信息,能够揭示原子的空间排列和相互作用。 综上所述,拉曼光谱仪凭借其优势能够很好地提供快速、简单、可重复、且更重要的是无损伤的定性分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量;目前,拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认