心连心鲜花网 加入收藏  -  设为首页
您的位置:心连心鲜花网 > 知识百科 > 正文

目录

1,虚数单位i等于多少?

虚数单位i等于多少?

i=-1。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。 i和-i就像1和-1一样,是有区别的,在复变函数中,i复数的研究和复平面是分不开的,任意一个复数z=x+iy,其中x叫做实部,y叫做虚部,x和y都是实数,x+iy就是一个复数。 复平面和实平面相仿,x轴表示复数的实部,y轴表示复数的虚部,例如在复平面上的点(2,2)表示复数2+2i,如果以-i为单位,复平面的纵轴就要向下指了。这个复数还可以用指数的形式表示,写作2e^(π/4) 虚数单位i就像实数中的1一样,我们认为1和-1不同,是因为我们日常生活中用1作为计数的单位,假设我们的老祖宗用-1作为计数单位,我们现在就会认为-1作为计数单位是天经地义的事情。 -1比1多个负号,当然不方便,同样,研究复数中谁也不会多此一举用-i作为单位。规定了i为单位展开对复数的研究,是简便的也是合理的。 虚数的实际应用如下: 电工学中利用复数表示交流电,虚数代表虚功,使得电工学计算大为简化。交流电路中的阻抗Z,在电工学的计算中是个虚数,即Z=R+jX。其中的实部就是电阻R,虚部就是电抗X,由电感的感抗jXl和电容器的容抗-jXc的和。 可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。在此时,一点P坐标为P (a,bi),将坐标乘上i即点绕圆心逆时针旋转90度。

2,虚数单位是什么呢?

虚数单位是 i 。i = -1,并且i可以与实数在一起按照同样的运算律进行四则运算。 虚数单位 i 的幂具有周期性,虚数单位用 i 表示,是欧拉在1748年在其《无穷小分析理论》中提出,但没有受到重视。1801年经高斯系统使用后,才被普遍采用。虚数单位 i 首先为瑞士数学家欧拉所创用,到德国数学家高斯提倡才普遍使用。 注意事项 一旦固定了方程的一个解 i ,那么−i(不等于 i )也是一个解,由于这个方程是唯一的定义,因此这个定义表面上有歧义。然而,只要把其中一个解选定,并固定为 i ,那么实际上是没有歧义的。 这是因为,虽然−i和 i 在数量上不是相等的(它们是一对共轭虚数),但是 i 和−i之间没有质量上的区别(−1和+1就不是这样的)。