心连心鲜花网 加入收藏  -  设为首页
您的位置:心连心鲜花网 > 知识百科 > 正文

目录

1,麦克斯韦的电磁理论具体内容是什么?

麦克斯韦的电磁理论具体内容是什么?

麦克斯韦电磁场理论的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系。这个电磁场理论体系的核心就是麦克斯韦方程组。
麦克斯韦方程组是由四个微分方程构成,:

(1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。

(2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。

(3)描述了变化的磁场激发电场的规律。

(4)描述了变化的电场激发磁场的规律。
麦克斯韦方程都是用微积分表述的,具体推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用着急,等上了大学学了微积分就都能看懂了:
1.
安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和。
2.法拉第电磁感应定律,即电磁场互相转化,电场强度的弦度等于磁感应强度对时间的负偏导。
3.磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零。
4.高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。

2,麦克斯韦的电磁理论的应用

麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念。这就是麦克斯韦电磁场理论的基本概念如下:变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。 麦克斯韦电磁场理论的要点可以归结为: 1、几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。 2、电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。 3、导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。 4、磁通量既无始点又无终点,即不存在磁荷。 5、光波也是电磁波。 麦克斯韦方程组是由四个微分方程构成: (1)、∇·E=ρ/ε0,描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)、∇·B=0,描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)、∇×E=-∂B/∂t,描述了变化的磁场激发电场的规律。 (4)、∇×B=μ0J+1/c2*∂E/∂t (c2=1/μ0ε0),描述了变化的电场激发磁场的规律。 麦克斯韦方程都是用微积分表述的,涉及到的方程包括: 1、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量。麦克斯韦:电位移的散度等于电荷密度。 2、磁通连续性定理,即磁力线永远是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零。 3、法拉第电磁感应定律,即电磁场互相转化,电场强度的旋度等于磁感应强度对时间的负偏导。 4、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和。 物理意义 方程1:任何闭合曲面的电位移通量只与该闭合曲面内自由电荷有关,同时反映了变化的磁场所产生的电场总是涡旋状的——电场的高斯定理。 方程2:变化的磁场产生涡旋电场,即变化的磁场总与电场相伴——法拉弟电磁感应定律。 方程3:任何形式产生的磁场都是涡旋场,磁力线都是闭合的——磁场的高斯定理。 方程4:全电流与磁场的关系,揭示了变化电场产生涡旋磁场的规律,即变化的电场总与磁场相伴——全电流定律。 在各向同性介质中,电磁场量之间有如下的关系: 根据麦克斯韦方程组、电磁场量之间关系式、初始条件及电磁场量的边界条件,可以确定任一时刻介质中某一点的电磁场。

3,麦克斯韦完整理论

方程1:任何闭合曲面的电位移通量只与该闭合曲面内自由电荷有关,同时反映了变化的磁场所产生的电场总是涡旋状的 ----电场的高斯定理
方程2:变化的磁场产生涡旋电场,即变化的磁场总与电场相伴
----法拉弟电磁感应定律
方程3:任何形式产生的磁场都是涡旋场,磁力线都是闭合的
----磁场的高斯定理
方程4:全电流与磁场的关系,揭示了变化电场产生涡旋磁场的规律,即变化的电场总与磁场相伴 ----全电流定律
在各向同性介质中,电磁场量之间有如下的关系
根据麦克斯韦方程组、电磁场量之间关系式、初始条件及电磁场量的边界条件,可以确定任一时刻介质中某一点的电磁场【摘要】
麦克斯韦完整理论【提问】
稍等一下哈【回答】
麦克斯韦理论
涡旋电场和位移电流的概念
麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念。这就是麦克斯韦电磁场理论的基本概念如下:变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。
基本信息【回答】
方程1:任何闭合曲面的电位移通量只与该闭合曲面内自由电荷有关,同时反映了变化的磁场所产生的电场总是涡旋状的 ----电场的高斯定理
方程2:变化的磁场产生涡旋电场,即变化的磁场总与电场相伴
----法拉弟电磁感应定律
方程3:任何形式产生的磁场都是涡旋场,磁力线都是闭合的
----磁场的高斯定理
方程4:全电流与磁场的关系,揭示了变化电场产生涡旋磁场的规律,即变化的电场总与磁场相伴 ----全电流定律
在各向同性介质中,电磁场量之间有如下的关系
根据麦克斯韦方程组、电磁场量之间关系式、初始条件及电磁场量的边界条件,可以确定任一时刻介质中某一点的电磁场【回答】
麦克斯韦提出了两个假设:
正文
变化的磁场可产生涡旋电场 变化的电场(位移电流)可产生磁场
一。位移电流
1.矛盾
a.导线中存在非稳恒的传导电流
b.电容器两极板间无传导电流存在
----回路中传导电流不连续
c.任取一环绕导线的闭合曲线L,以L
为边界可以作和 两个曲面
对曲面
对曲面
----稳恒磁场安培环路定律不再适用
2.位移电流
设极板面积为S,某时刻极板上的自由电荷面密度为,则
电位移通量为
----电位移通量随时间的变化率等于导线中的传导电流
麦克斯韦称 为位移电流,即
----位移电流密度【回答】
我想知道到怎样变化的磁场激发出怎样的电场,然后电场又激发出怎样的磁场那段话【提问】
根据麦克斯韦电磁场理论,变化的磁场产生电场,变化的电场产生磁场,交替产生,由近向远传播,形成电磁波,电磁波在真空中的传播速度等于光速.
变化的电场产生磁场,变化的磁场产生电场,电场和磁场交替产生,由近向远传播,形成电磁波.在真空中电磁波的速度等于光速.【回答】
还有产生恒定电场或磁场的条件呢【提问】
稍等一下哈【回答】
变化的电场产生磁场,变化的磁场产生电场,电场和磁场交替产生,由近向远传播,形成电磁波.在真空中电磁波的速度等于光速.【回答】
[吃鲸]【提问】
麦克斯韦说均匀变化的电场产生恒定的磁场,可不是均匀变化的 电流 产生恒定的磁场.直流电不是不是均匀变化的 电流,却是均匀变化的 电场.因为稳定的电流可以看作是均匀移动的电子,那么电场自然就是均匀变化的.【回答】
这么说的话,均匀变化的磁场产生恒定电流,恒定电流又等价于均匀变化电场,那是不是就是说均匀变化磁场产生均匀变化电场【提问】
是的呀【回答】
可以这么理解【回答】

4,麦克斯韦创立了什么理论

麦克斯韦创立了什么理论介绍如下: 麦克斯韦创立了电磁理论。 麦克斯韦是电磁理论的创始人。1865年他预言了电磁波的存在,电磁波只可能是横波,并推导出电磁波的传播速度等于光速,同时得出结论:光是电磁波的一种形式,揭示了光现象和电磁现象之间的联系。 麦克斯韦电磁方程介绍如下: 麦克斯韦方程组乃是由四个方程共同组成的: 高斯定律:该定律描述电场与空间中电荷分布的关系。电场线开始于正电荷,终止于负电荷(或无穷远)。计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。 高斯磁定律:该定律表明,磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的磁通量等于零,或者,磁场是一个无源场。 法拉第感应定律:该定律描述时变磁场怎样感应出电场。电磁感应是制造许多发电机的理论基础。例如,一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。 麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流(原本的安培定律),另一种是靠时变电场,或称位移电流(麦克斯韦修正项)。 在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。