心连心鲜花网 加入收藏  -  设为首页
您的位置:心连心鲜花网 > 知识百科 > 正文

目录

1,什么是正实数

什么是正实数

正实数又分为正有理数和正无理数,负实数分为负有理数和负无理数,0就是0,所以0不是正实数和负实数。0是自然数,0是偶数,0是整数,0是实数,0是阿拉伯数字。 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。有理数可以分成整数和分数,而整数可以分为正整数、零和负整数。分数可以分为正分数和负分数。无理数可以分为正无理数和负无理数。 计算法则: 正数1+正数2=正数 正数+负数=符号取绝对值较大的加数的符号,数值取“用较大的绝对值减去较小的绝对值 ”的所得值。 正数1-正数2:如果实轴上正数1在正数2右侧,则结果大于0,为正数;否则小于0,为负数。 负数1-正数2=-(正数+负数)=负数异号两数相减,等于其绝对值相加。

2,实数是什么意思

实数是有理数和无理数的总称。 实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括无限循环小数、有限小数、整数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”--意义是“实在的数”。 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。 实数的高级性质: 实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。 实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的公理不相关。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。 在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

3,正实数是什么意思

正实数是大于0的所有实数,包括有理数和无理数两类、或代数数和超越数两类。 正实数是数学术语,比0大的数叫正数,0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写,负数用负号“-”和一个正数标记,如-2,代表的就是2的相反数。 整数和小数的集合也是实数,实数的定义是: 有理数和无理数的集合。而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。