目录
1,假设检验怎么做呢?
假设检验的基本步骤如下: 1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。 H0:样本与总体或样本与样本间的差异是由抽样误差引起的; H1:样本与总体或样本与样本间存在本质差异; 预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。 2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。 3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
2,假设检验的原理
假设检验的原理:假设检验 = 显著性水平 + 小概率思想 + 反证法。 假设检验是统计推断的一个重要内容,用于判断某个假设是否正确。在数据分析中,总体的参数始终是不可知的,只能由统计量推断总体的参数。在统计推断过程中,需要对参数提出一定的假设,然后对提出的假设进行假设检验。 假设检验与参数估计(包括点估计和区间估计)是建立在中心极限定理和抽样分布之上的推断统 计的两个重要基础方法,由这两个方法出发,生发出诸多有针对性的统计分析方法。